Abstract

Experiments aiming to directly detect dark matter through particle recoils can achieve energy thresholds of $\mathcal{O}(1\,\mathrm{eV})$. In this regime, ionization signals from small-angle Compton scatters of environmental $\gamma$-rays constitute a significant background. Monte Carlo simulations used to build background models have not been experimentally validated at these low energies. We report a precision measurement of Compton scattering on silicon atomic shell electrons down to 23$\,$eV. A skipper charge-coupled device (CCD) with single-electron resolution, developed for the DAMIC-M experiment, was exposed to a $^{241}$Am $\gamma$-ray source over several months. Features associated with the silicon K, L$_{1}$, and L$_{2,3}$-shells are clearly identified, and scattering on valence electrons is detected for the first time below 100$\,$eV. We find that the relativistic impulse approximation for Compton scattering, which is implemented in Monte Carlo simulations commonly used by direct detection experiments, does not reproduce the measured spectrum below 0.5$\,$keV. The data are in better agreement with $ab$ $initio$ calculations originally developed for X-ray absorption spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.