Abstract

Ultracold atoms and molecules provide ideal stages for precision tests of fundamental physics. With microkelvin neutral strontium atoms confined in an optical lattice, we have achieved a fractional resolution of 4 × 10-15 on the 1S0–3P0 doubly forbidden 87 Sr clock transition at 698 nm. Measurements of the clock line shifts as a function of experimental parameters indicate systematic errors below the 10-15 level. The ultrahigh spectral resolution permits resolving the nuclear spin states of the clock transition at small magnetic fields, leading to measurements of the 3P0 magnetic moment and metastable lifetime. In addition, photoassociation spectroscopy performed on the narrow 1S0–3P1 transition of 88 Sr shows promise for efficient optical tuning of the ground state scattering length and production of ultracold ground state molecules. Lattice-confined Sr 2 molecules are suitable for constraining the time variation of the proton–electron mass ratio. In a separate experiment, cold, stable, ground state polar molecules are produced from Stark decelerators. These cold samples have enabled an order-of-magnitude improvement in the measurement precision of ground state, Λ doublet microwave transitions in the OH molecule. Comparing the laboratory results to those from OH megamasers in interstellar space will allow a sensitivity of 10-6 for measuring the potential time variation of the fundamental fine structure constant Δα/α over 1010 years. These results have also led to improved understandings of the molecular structure. The study of the low magnetic field behavior of OH in its 2Π3/2 ro-vibronic ground state precisely determines a differential Landé g factor between opposite parity components of the Λ doublet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call