Abstract

To address the issue of estimating soil moisture at a hyper-resolution scale, a methodology referred to as Precision Irrigation Soil Moisture Mapper (PrISMM), that includes three key components, is developed: high-resolution remotely sensed optical and thermal data, surface energy balance modeling, and site-specific soil analysis. An Unmanned Aerial Vehicle/System (UAV or UAS) collects high-resolution multispectral imagery in the Dallas–Fort Worth metropolitan study area. Orthomosaics are converted to thermal inertia estimates in a spatially distributed format using the remotely sensed data combined with a set of surface energy balance modeling equations. Using thermal and physical properties of soil gained from site-specific soil analysis, thermal inertia estimates were further converted from thermal inertia to daily volumetric soil water content (VSWC) with a horizonal resolution of 8.6 cm. A ground truthing dataset of measured VSWC values taken from a Time Domain Reflectometer was compared with model results, producing a reasonable correlation with an average coefficient of determination of (R2) = 0.79, an average root mean square error (RMSE) = 0.0408, and mean absolute error (MAE) = 0.0308. This study highlights a practical approach of estimating VSWC for irrigation purposes while providing superior spatio-temporal coverage over in situ methods. The authors envision that PrISMM can be implemented in water usage management by relating VSWC with weather forecasts and evapotranspiration rates to develop time-based spatially distributed irrigation management plans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call