Abstract

Perceptron models have become integral tools for pattern recognition and classification problems in engineering fields. This study envisioned implementing artificial neural networks to forecast the performance of a mini-spray dryer for desulfurization activities. This work adopted k-fold cross-validation, a rigorous technique that evaluates model performance across multiple data segments. Several ANN models (21) were trained on data obtained from sulfation conditions, including sulfation temperature (120 °C–200 °C), slurry pH (4–12), stoichiometric ratio (0.5–2.5), slurry solid concentration (6%–14%) as the feed input and sulfur capture as the response. Three hundred synthetic datasets generated using the Gaussian noise data augmentation underwent a 10-fold cross-validation process before simulation on neural networks triggered by the logsig and tansig activation functions. The computation accuracy was further evaluated by altering the number of hidden cells from 2 to 10. The ANN architectures were assessed using statistical metrics such as mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and the coefficient of determination (R 2) techniques. Overall, error estimation suggests cross-validation and data augmentation are critical in efficient neural network generalization. The logsig function trained with 10 hidden cells presented closer data articulation when mapped onto actual values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.