Abstract

We have observed and located more than 60 magnetic field-induced Feshbach resonances in ultracold collisions of ground-state $^{133}\mathrm{Cs}$ atoms. Multiple extremely weak Feshbach resonances associated with $g$-wave molecular states are detected through variations in the radiative collision cross sections. The Feshbach spectroscopy allows us to determine the interactions between ultracold cesium atoms and the molecular energy structure near the dissociation continuum with unprecedented precision. Our work not only represents a very successful collaboration of experimental and theoretical efforts, but also provides essential information for cesium Bose-Einstein condensation, ${\mathrm{Cs}}_{2}$ molecules, and atomic clock experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.