Abstract

Precision farming enables agricultural management decisions to be tailored spatially and temporally. Site-specific sensing, sampling, and managing allow farmers to treat a field as a heterogeneous entity. Through targeted use of inputs, precision farming reduces waste, thereby cutting both private variable costs and the environmental costs such as those of agrichemical residuals. At present, large farms in developed countries are the main adopters of precision farming. But its potential environmental benefits can justify greater public and private sector incentives to encourage adoption, including in small-scale farming systems in developing countries. Technological developments and big data advances continue to make precision farming tools more connected, accurate, efficient, and widely applicable. Improvements in the technical infrastructure and the legal framework can expand access to precision farming and thereby its overall societal benefits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.