Abstract
Geometrically enhanced photocathodes are currently being developed for use in applications that seek to improve detector efficiency in the visible to X-ray ranges. Various photocathode surface geometries are typically chosen based on the detector operational wavelength region, along with requirements such as spatial resolution, temporal resolution and dynamic range. Recently, a structure has been identified for possible use in the X-ray region. This anisotropic high aspect ratio structure has been produced in silicon using inductively coupled plasma (ICP) etching technology. The process is specifically developed with respect to the pattern density and geometry of the photocathode chip to achieve the desired sidewall profile angle. The tapered sidewall profile angle precision has been demonstrated to be within ± 2.5° for a ~ 12° wall angle, with feature sizes that range between 4-9 μm in diameter and 10-25 μm depth. Here we discuss the device applications, design and present the method used to produce a set of geometrically enhanced high yield X-ray photocathodes in silicon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.