Abstract

AbstractComplete blood blockage and low ectopic embolism risk are urgently needed for transcatheter arterial chemoembolization (TACE) treatment. However, the clinically available embolic reagents still face the huge challenges of fast recanalization and undesirable migration. In the present work, a temperature‐sensitive poloxamer 407 (F127)/hydroxymethyl cellulose (HPMC)/sodium alginate (SA)‐derived hydrogel (FHSgel) is explored as a novel embolic material in the TACE treatment. With increasing temperature, this FHSgel undergoes sensitive phase transition process, so as to block both mainstream and peripheral vessels. Meanwhile, taking advantage of the close fitness between shapeable FHSgel and vessels, the embolism time is extremely extended. Moreover, the leaked FHSgel could be diluted below the gelation concentration, thus effectively preventing from ectopic embolism. TACE treatment is further conducted for rabbit liver and kidney tumors, wherein the atrophic blood vessels and necrotic tissue demonstrate superior therapy effect. In addition, all three pharmaceutical excipients are approved by the Food and Drug Administration (FDA). In contrast with the clinical embolic reagents, the temperature‐sensitive FHSgel for the first time completely blocks both mainstream and peripheral vessels with totally biocompatible pharmaceutical excipients, and makes a breakthrough in terms of largely reducing the ectopic embolism risk, thus providing a new generation for interventional embolization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.