Abstract
This paper presents a pioneering methodology for refining product recommender systems, introducing a synergistic integration of unsupervised models—K-means clustering, content-based filtering (CBF), and hierarchical clustering—with the cutting-edge GPT-4 large language model (LLM). Its innovation lies in utilizing GPT-4 for model evaluation, harnessing its advanced natural language understanding capabilities to enhance the precision and relevance of product recommendations. A flask-based API simplifies its implementation for e-commerce owners, allowing for the seamless training and evaluation of the models using CSV-formatted product data. The unique aspect of this approach lies in its ability to empower e-commerce with sophisticated unsupervised recommender system algorithms, while the GPT model significantly contributes to refining the semantic context of product features, resulting in a more personalized and effective product recommendation system. The experimental results underscore the superiority of this integrated framework, marking a significant advancement in the field of recommender systems and providing businesses with an efficient and scalable solution to optimize their product recommendations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.