Abstract
Laser interferometry is widely used as a measuring system in many fields because of its high resolution and ability to measure a broad area in real-time all at once. In conventional LASER interferometry, for example Out-of-plane ESPI(Electronic Speckle Pattern Interferometry), In plane ESPI, Shearography and Holography, it uses PZT or other components as a phase shift instrumentation to extract 3D deformation data, vibration mode and others. However, in most cases PZT has some disadvantages, which include non-linear errors and limited time of use. In the present study, a new type of LASER interferometry using a laser diode is proposed. Using LASER Diode Sinusoidal Phase Modulating (LD-SPM) interferometry, the phase modulation can directly modulated by controlling the LASER Diode injection current thereby eliminating the need for PZT and its components. This makes the interferometry more compact. This paper reports on a new approach to the LD Modulating interferometry that involves four-bucket phase shift method. This study proposes a four-bucket phase mapping algorithm, which developed to have a guaranteed application, to stabilize the system in the field and to be a user-friendly GUI. In this paper, LD modulating interferometry had shown the theory for LD wavelength modulation and sinusoidal phase modulation. Four-bucket phase mapping algorithm then introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.