Abstract

The mathematical models and experimental validations of precision cylindrical face grinding using a narrow ring superabrasive wheel are presented. The high pressure seal in diesel engine fuel systems demands the μm-scale form tolerance specifications and has driven the development of precision face grinding using the superabrasive wheel. Two mathematical models were developed: one was applied to predict the convex or concave face profile and another was used to simulate the abrasive trajectories, which become the cross-hatch grinding marks on the ground face. Cylindrical face grinding experiments were conducted. Experimental measurements of face profile and abrasive trajectories were used to validate the theoretical results. For high-pressure sealing surfaces, the height of face profile and grinding trajectories were two critical characteristics for design and manufacturing. Two design tools, a linear approximate solution for the profile height and an atlas for grinding trajectories, were developed to assist the selection of process parameters for the machine setup.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call