Abstract

The most successful therapeutic strategies for locally advanced cancers continue to combine decades-old classical radiosensitizing chemotherapies with radiotherapy. Molecular targeted radiosensitizers offer the potential to improve the therapeutic ratio by increasing tumor-specific kill while minimizing drug delivery and toxicity to surrounding normal tissue. Auristatins are a potent class of anti-tubulins that sensitize cells to ionizing radiation damage and are chemically amenable to antibody conjugation. To achieve tumor-selective radiosensitization, we synthesized and tested anti-HER2 antibody-drug conjugates of two auristatin derivatives with ionizing radiation. Monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) were attached to the anti-HER2 antibodies trastuzumab and pertuzumab through a cleavable linker. While MMAE is cell permeable, MMAF has limited cell permeability as free drug resulting in diminished cytotoxicity and radiosensitization. However, when attached to trastuzumab or pertuzumab, MMAF was as efficacious as MMAE in blocking HER2-expressing tumor cells in G2-M. Moreover, MMAF anti-HER2 conjugates selectively killed and radiosensitized HER2-rich tumor cells. Importantly, when conjugated to targeting antibody, MMAF had the advantage of decreased bystander and off-target effects compared with MMAE. In murine xenograft models, MMAF anti-HER2 antibody conjugates had less drug accumulated in the normal tissue surrounding tumors compared with MMAE. Therapeutically, systemically injected MMAF anti-HER2 conjugates combined with focal ionizing radiation increased tumor control and improved survival of mice with HER2-rich tumor xenografts. In summary, our results demonstrate the potential of cell-impermeable radiosensitizing warheads to improve the therapeutic ratio of radiotherapy by leveraging antibody-drug conjugate technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.