Abstract
Tethered spacecraft are particularly well suited to serve as isolation platforms for space-borne observatories. It has previously been shown that, due to the relatively large tether force, conventional means of performing attitude control for tethered satellites are inefficient for any mission with pointing requirements more stringent than about 1 deg. A particularly effective method of implementing attitude control for tethered satellites is to use the tether tension force to generate control moments by moving the tether attach point relative to the subsatellite center of mass. This paper presents the development of a precision pointing control algorithm for tethered satellites and the simulation of the control system with laboratory hardware. The control algorithm consists of a linear quadratic regulator feedback law and a Kalman filter. The control algorithm has been shown to regulate the vehicle orientation to within 0.60 arcsec rms. This level of precision was achieved only after including a mass center estimator and accurately modeling the effects of the nonlinear attach point motion actuator.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.