Abstract

Spontaneous pattern formation is a fundamental scientific problem that has received much attention since the seminal theoretical work of Turing on reaction-diffusion systems. In molecular biophysics, this phenomenon often takes place under the influence of large fluctuations. It is then natural to inquire about the precision of such pattern. In particular, spontaneous pattern formation is a nonequilibrium phenomenon, and the relation between the precision of a pattern and the thermodynamic cost associated with it remains largely unexplored. Here, we analyze this relation with a paradigmatic stochastic reaction-diffusion model, i.e., the Brusselator in one spatial dimension. We find that the precision of the pattern is maximized for an intermediate thermodynamic cost, i.e., increasing the thermodynamic cost beyond this value makes the pattern less precise. Even though fluctuations get less pronounced with an increase in thermodynamic cost, we argue that larger fluctuations can also have a positive effect on the precision of the pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.