Abstract

It has been paid much attention to improve the helical twisting power (β) of dopants in chiral nematic liquid crystals (CLCs); however, the correlations between the β value and the molecular structures as well as the interaction with nematic LCs are far from clear. In this work, a series of reversibly photo-switchable axially chiral dopants with different lengths of alkyl or alkoxyl substituent groups have been successfully synthesized through nucleophilic substitution and the thiol-ene click reaction. Then, the effect of miscibility between these dopants and nematic LCs on the β values, as well as the time-dependent decay/growth of the β values upon irradiations, has been investigated. The theoretical Teas solubility parameter shows that the miscibility between dopants and nematic LCs decreases with increasing of the length of substituent groups from dopant 1 to dopant 4. The β value of chiral dopants in nematic LCs decreases from dopant 1 to dopant 4 both at the visible light photostationary state (PSS) and at the UV PSS after UV irradiation. With increasing of the length of substituent groups, the photoisomerization rate constant of dopants increases for trans-cis transformation upon UV irradiation and decreases for the reverse process upon visible light irradiation either in isotropic ethyl acetate or in anisotropic LCs, although the constant in ethyl acetate is several times larger than the corresponding value in LCs. Also, the color of the CLCs could be tuned upon light irradiations. These results enable the precise tuning of the pitch and selective reflection wavelength/color of CLCs, which paves the way to the applications in electro-optic devices, information storage, high-tech anticounterfeit, and so forth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.