Abstract
AbstractThe development of nonpyrolytic catalysts featuring precisely defined active sites represents an effective strategy for investigating the fundamental relationship between the catalytic activity of oxygen reduction reaction (ORR) catalysts and their local coordination environments. In this study, we have synthesized a series of model electrocatalysts with well‐defined CoN4 centers and nonplanar symmetric coordination structures. These catalysts were prepared by a sequential process involving the chelation of cobalt salts and 1,10‐phenanthroline‐based ligands with various substituent groups (phen(X), where X=OH, CH3, H, Br, Cl) onto covalent triazine frameworks (CTFs). By modulating the electron‐donating or electron‐withdrawing properties of the substituent groups on the phen‐based ligands, the electron density surrounding the CoN4 centers was effectively controlled. Our results demonstrated a direct correlation between the catalytic activity of the CoN4 centers and the electron‐donating ability of the substituent group on the phenanthroline ligands. Notably, the catalyst denoted as BCTF−Co‐phen(OH), featuring the electron‐donating OH group, exhibited the highest ORR catalytic activity. This custom‐crafted catalyst achieved a remarkable half‐wave potential of up to 0.80 V vs. RHE and an impressive turnover frequency (TOF) value of 47.4×10−3 Hz at 0.80 V vs. RHE in an alkaline environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.