Abstract

The anticancer efficacy of chemotherapy is greatly limited by short blood circulation and poor tumor selectivity. Thus, anticancer prodrugs with prolonged systemic circulation, tumor-specific distribution and bioactivation, could significantly strengthen the chemotherapy efficacy. Herein, we design two novel tumor cell reduction/oxidation-responsive docetaxel (DTX) prodrugs, DTX-maleimide conjugates with disulfide bond (DSSM) or thioether bond (DSM) linkages, to evaluate the roles of different sensitive linkages in drug release, pharmacokinetics and therapeutic efficacy. An ester bond-linkage prodrug (DM) is utilized as a non-sensitive control. DSSM and DSM show reduction- or oxidation-sensitive release behavior, respectively, and exhibit hyperselective bioactivation and cytotoxicities between cancerous and normal cells. They could instantly hitchhike blood circulating albumin after i.v. administration with albumin-binding half-lives as short as 1 min, resulting in prolonged systemic circulation, increased tumor accumulation. In response to the upregulated reduction/oxidation environment within tumor cells, DSSM and DSM exhibit selectively release capacity in tumor tissues, their TAITumor/Liver values are over 30-fold greater than DM. Combining the above delivery advantages into one, DSSM and DSM achieve enhanced antitumor efficacy of DTX. Such a uniquely developed strategy, integrating high albumin-binding capability and reduction/oxidation-sensitive drug superselective release in tumors, has great potential to be applied in clinical cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call