Abstract

The ultrasonic ranging equipment usually need to measure the “time of flight”, that it takes for acoustic waves to travel the measured distance. Due to the influence of various noises, ultrasonic distance measurement using the pulse signal is difficult to obtain accurate measurement results. Continuous signal phase detected method can achieve the precision measurement of the transmission time, and has a strong noise resistance capability. When single-frequency signals are used, the measurement range is limited to a small extent. This problem can be solved by dual-tone or multi-frequency method. But in short distance ranging applications especial in the restricted space fields, there usually exists strong multiple echoes. Because of the echoes, the ranging accuracy will be significantly decreased. In this paper, a singlefrequency continuous signal modulated by a pseudo-random sequence is used, since the pseudo-random sequence has excellent autocorrelation properties. On the other hand, an improved signal phase estimation algorithm is used to realize the high-precision measurement of TOF. An experimental measurement system was built, and experiments showed that the method can get micron degree precision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call