Abstract

Precise control of the thickness of large-area two-dimensional (2D) organometal halide perovskite layers is extremely challenging owing to the inherent instability of the organic component. Herein, a novel, highly reproducible, and facile solvothermal route is reported to synthesize and tailor the thickness and optical band gap of the organic-inorganic halide perovskite nanosheets (NSs). Our study reveals that self-assembly of randomly oriented perovskite nanorods leads to the growth of multilayered perovskite NSs at ∼100 °C, while at higher temperature, large-area few-layer to bilayer 2D NSs (CH3NH3PbBr3) are obtained through lattice expansion and layer separation depending precisely on the temperature. Interestingly, the thickness of the 2D NSs shows a linear dependence on the reaction temperature and thus enables precise tuning of the thickness from 14 layers to 2 layers, giving rise to a systematic increase in the band gap and appearance of excitonic absorption bands. Quantitative analysis of the change in the band gap with thickness revealed a strong quantum confinement effect in the 2D layers. The perovskite 2D NSs exhibit tunable color and a high photoluminescence (PL) quantum yield (QY) up to 84%. Through a careful analysis of the steady-state and time-resolved PL spectra, the origin of the lower PL QY in thinner NSs is traced to surface defects in the 2D layers, for the first time. A white light converter was fabricated using the composition-tuned 2D CH3NH3PbBrI2 NS on a blue light-emitting diode chip. The 2D perovskite photodetector exhibits a stable and very fast rise/fall time (24 μs/103 μs) along with high responsivity and detectivity of ∼1.93 A/W and 1.04 × 1012 Jones, respectively. Storage, operational, and temperature-dependent stability studies reveal high stability of the 2D perovskite NSs under the ambient condition with high humidity. The reported method is highly promising for the development of large-area stable 2D perovskite layers for various cutting-edge optoelectronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.