Abstract

BackgroundAcetate is one of promising feedstocks owing to its cheap price and great abundance. Considering that tyrosine production is gradually shifting to microbial production method, its production from acetate can be attempted to further improve the economic feasibility of its production.ResultsHere, we engineered a previously reported strain, SCK1, for efficient production of tyrosine from acetate. Initially, the acetate uptake and gluconeogenic pathway were amplified to maximize the flux toward tyrosine. As flux distribution between glyoxylate and TCA cycles is critical for efficient precursor supplementation, the activity of the glyoxylate cycle was precisely controlled by expression of isocitrate lyase gene under different-strength promoters. Consequently, the engineered strain with optimal flux distribution produced 0.70 g/L tyrosine with 20% of the theoretical maximum yield which are 1.6-fold and 1.9-fold increased values of the parental strain.ConclusionsTyrosine production from acetate requires precise tuning of the glyoxylate cycle and we obtained substantial improvements in production titer and yield by synthetic promoters and 5′ untranslated regions (UTRs). This is the first demonstration of tyrosine production from acetate. Our strategies would be widely applicable to the production of various chemicals from acetate in future.

Highlights

  • Acetate is one of promising feedstocks owing to its cheap price and great abundance

  • We demonstrated an efficient method of converting acetate to tyrosine via precise tuning of the glyoxylate cycle in Escherichia coli

  • We further overexpressed ppsA due to its crucial gluconeogenic activity during glucose utilization [17], the SCK1 strain without additional engineering was chosen as this gene is natively up-regulated during acetate assimilation [32, 35]

Read more

Summary

Introduction

Acetate is one of promising feedstocks owing to its cheap price and great abundance. Considering that tyrosine production is gradually shifting to microbial production method, its production from acetate can be attempted to further improve the economic feasibility of its production. Because of ethical and economic issues on the use of starch crop-based feedstock [1], alternative and abundant feedstock for microbial biochemical production are being extensively investigated [2,3,4]. In this regard, acetate is a promising feedstock as it is cheap and abundant. Acetate is a primary intermediate in anaerobic digestion of organic wastes [6, 7] It is Tyrosine is one of the amino acids and can be utilized as a precursor for the synthesis of flavonoids and alkaloids in food, pharmaceutical, and cosmetic industries [14, 15].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.