Abstract

Tuning of molecular conductance in a liquid environment is a hot topic in molecular electronics. In this article, we explore a new concept where the Fermi level positions of the metallic ends are varied simply by modifying the electroactive salt concentration in solution. We rely on the electrochemical scanning tunneling microscope break junction method that allows the construction in solution of copper atomic contacts that can be then bridged by single molecules. The experimental conductance evolution is first confronted with an analytical formulation that allows the deduction of the molecule's LUMO position and electronic coupling factors. These parameters are in close agreement with those obtained by independent DFT calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.