Abstract

The ability to individually tune the pore length and pore diameter of silica-encapsulated gold core–shell nanoparticles (CSNPs) via a seeded encapsulation method is demonstrated and their impact on catalysis determined. Reducing the solvent volume during the shell growth phase resulted in CSNPs with shells of increasing thickness from 75 nm to 202 nm, following a linear relationship. The addition of 1, 3, 5-triisopropylbenzene (TIB) during synthesis increased the average pore diameter from 25 Å to 32 Å by swelling the pore template, swelling further to 38 Å when adding both TIB and n-decane. By decoupling the gold core reduction and silica condensation stages, gold core diameters were largely unaffected by silica growth reaction conditions. This was achieved by encapsulating CTAB-stabilized nanoparticles rather than reducing and stabilizing the nanoparticles during silica condensation. When used to catalyze solvent-free benzyl alcohol oxidation, it was found that CSNPs with increasing shell thicknesses demonstrated increased formation of the desirable aldehyde product, holding the undesired ester product yield constant. In contrast, CSNPs with increasing pore diameter exhibit increased formation of both aldehyde and ester products unselectively. These results—uniquely observed through the parametric isolation of pore length and diameter—suggest the reactant concentration at the pore wall due to hydrogen bonding, forming concentric “microphases” within the pores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call