Abstract

Stacking of two-dimensional (2D) van der Waals (vdW) atomic sheets has been established as a powerful approach to fabricating new materials with broad versatilities and emergent functionalities. Here we demonstrate a bottom-up approach to fabricating isolated single W6Te6 wires and their lateral assemblies, offering a unique platform for investigating the elegant role of vdW coupling in 1D systems with atomic precision. We find experimentally and theoretically a single W6Te6 wire is a 1D semiconductor with a band gap of ∼60 meV, and a semiconductor-to-metal transition takes place upon interwire vdW stacking. The metallic multiwires exhibit strong Tomonaga-Luttinger liquid characteristics with the correlation parameter g varying from g = 0.086 for biwire to g = 0.136 for six-wire assemblies, all much reduced from the Fermi liquid regime (g = 1). The present study demonstrates wire-by-wire vdW stacking is a versatile means for fabrication of 1D systems with tunable electronic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.