Abstract

The extracellular potential of excitable and nonexcitable cells with respect to ground is ∼0 mV. One of the known exceptions in mammals is the cochlear duct, where the potential is ∼80-100 mV, called the endocochlear potential (EP). The EP serves as the "battery" for transduction of sound, contributing toward the sensitivity of the auditory system. The stria vascularis (StV) of the cochlear duct is the station where the EP is generated, but the cell-specific roles in the StV are ill defined. Using the intermediate cell (IC)-specific tyrosinase promoter, under the control of diphtheria toxin (DT), we eliminated and/or halted differentiation of neural crest melanocytes after migration to the StV. The ensuing adult transgenic mice are profoundly deaf. Additionally, the EP was abolished. Expression of melanocyte early marker and Kir4.1 in ICs precedes the onset of pigment synthesis. Activation of DT leads to loss of ICs. Finally, in accord with the distinct embryology of retinal pigmented cells, transgenic mice with toxigenic ablation of neural crest-derived melanocytes have intact visual responses. We assert that the tyrosinase promoter is the distinct target for genetic manipulation of IC-specific genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.