Abstract
AbstractUltra‐high‐molecular‐weight (UHMW) polymers display outstanding properties and hold potential for wide applications. However, their precise synthesis remains challenging. Herein, we developed a novel reversible‐deactivation radical polymerization based on the strong and selective fluorine–fluorine interaction, allowing chain‐transfer agents to spontaneously differentiate into two groups that take charge of the chain growth and reversible deactivation of the growing chains, respectively. This method enables dramatically improved livingness of propagation, providing UHMW polymers with a surprisingly narrow molecular weight distribution (Đ≈1.1) from a variety of fluorinated (meth)acrylates and acrylamide at quantitative conversions under visible‐light irradiation. In situ chain‐end extensions from UHMW polymers facilitated the synthesis of well‐defined block copolymers, revealing the excellent chain‐end fidelity achieved by this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.