Abstract

The precise synthesis of novel ferrocene-based regular and asymmetric star-branched polymers by a methodology using specially designed 1,1-diphenylethylene derivatives in conjunction with living anionic polymerization of ferrocenylmethyl methacrylate (FMMA) is described. The methodology involves three reaction steps, i.e., (1) introduction of 3-(tert-butyldimethylsilyloxymethyl)phenyl (SMOP) group(s) at the polymer chain end or in-chain, (2) conversion of the SMOP group(s) to α-phenyl acrylate function(s), and (3) a linking reaction of the α-phenyl acrylate function(s) with the living anionic polymer of FMMA or methyl methacrylate. By developing this methodology, a variety of 3-arm $$ {\text{AA}^{\prime}_{2}} $$ , A2B, AB2, ABC and 4-arm A4, A3B, A2B2, A2BC, and ABC2 star-branched polymers with well-defined structures have been successfully synthesized. The A, B, and C segments are poly(FMMA), polystyrene, and poly(methyl methacrylate), respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call