Abstract

Dual-single-atom catalysts (DSACs) are the next paradigm shift in single-atom catalysts because of the enhanced performance brought about by the synergistic effects between adjacent bimetallic pairs. However, there are few methods for synthesizing DSACs with precise bimetallic structures. Herein, a pre-coordination strategy is proposed to precisely synthesize a library of DSACs. This strategy ensures the selective and effective coordination of two metals via phthalocyanines with specific coordination sites, such as -F- and -OH-. Subsequently, in-situ confinement inhibits the migration of metal pairs during high-temperature pyrolysis, and obtains the DSACs with precisely constructed metal pairs. Despite changing synthetic parameters, including transition metal centers, metal pairs, and spatial geometry, the products exhibit similar atomic metal pairs dispersion properties, demonstrating the universality of the strategy. The pre-coordination strategy synthesized DSACs shows significant CO2 reduction reaction performance in both flow-cell and practical rechargeable Zn-CO2 batteries. This work not only provides new insights into the precise synthesis of DSACs, but also offers guidelines for the accelerated discovery of efficient catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.