Abstract

Plasma is a promising approach for machining of fused glass substrates. Developing high-performance microwave torch is the core element to ensure the processing accuracy of this technology. In this study, a spline curve-based microwave torch internal electrode structure was proposed, which increased the internal electric field strength by 54 %. The discharge dynamics simulation based on this electrode shows that the plasma is excited at the inner electrode tip and the bottom of the resonant cavity, then it expands to form a linear discharge region and eventually fill the discharge tube. It was revealed by CCD images that with the increase of carrier gas flow rate, turbulent flow state appears in the tail of the jet. OES data shows that microwave Ar plasma can effectively dissociate CF4, and due to the oxidation effect of oxygen, CFx and C2 content decrease significantly with the addition of oxygen. The machining experiment on fused silica shows that the material removal stability of this torch reaches 3.69 %, and the removal rate increases nYarly with dwell time due to thermal effect. Finally, the machining performance of the atmospheric pressure microwave plasma jet was verified by figuring of a planar fused silica surface reducing the form error from 108.1 nm RMS to 16.5 nm RMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call