Abstract

AbstractAdvanced multiple resonance induced thermally activated delayed fluorescence (MR‐TADF) emitters have emerged as a privileged motif for applications in organic light‐emitting diodes (OLEDs), because they furnish highly tunable TADF characteristics and high color purity emission. Herein, based on the unique nitrogen‐atom embedding molecular engineering (NEME) strategy, a series of compounds BN‐TP‐Nx (x=1, 2, 3, 4) have been customized. The nitrogen‐atom anchored at different position of triphenylene hexagonal lattice entails varying degrees of perturbation to the electronic structure. The newly‐constructed emitters have demonstrated the precise regulation of emission maxima of MR‐TADF emitters to meet the actual industrial demand, and further enormously enriched the MR‐TADF molecular reservoir. The BN‐TP‐N3‐based OLED exhibits ultrapure green emission, with peak of 524 nm, full‐width at half‐maximum (FWHM) of 33 nm, Commission Internationale de L'Eclairage (CIE) coordinates of (0.23, 0.71), and maximum external quantum efficiency (EQE) of 37.3 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.