Abstract

This paper describes a convenient technique of precise radial velocity estimation for inverse synthetic aperture radar (ISAR). In order to keep both the range profile and phase history of the echoes coherent, direct sampling with high sampling rate using high performance analog-to-digital converter and matched-filter correlation processing in pulse compression are used for the ISAR system. Due to the coherence property of the echoes, the translational motion compensation parameters for ISAR imaging are just the radial motion parameters of the target. Thus, the coarse velocity estimation is obtained by range alignment and fine velocity estimation is achieved by phase adjustment. The fine velocity estimation is ambiguous and the coarse velocity estimation is used for ambiguity resolution. The advantage of this technique is the high precision with range error values at sub wavelength levels, and it achieves velocity information and translational motion compensation at the same time. Both simulated and experimental validations are presented to verify the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.