Abstract

A series of triarylboron-based graphdiyne analogues (TAB-GDYs) with tunable pore size were prepared through copper mediated coupling reaction. The elemental composition, chemical bond, morphology of TAB-GDYs were well characterized. The crystallinity was confirmed by selected area electron diffraction (SAED) and stacking modes were studied in combination with high resolution transmission electron microscope (HRTEM) and structure simulation. The absorption and desorption isotherm revealed relatively high specific surface area of these TAB-GDYs up to 788 m2 g-1 for TMTAB-GDY, which decreased as pore size enlarged. TAB-GDYs exhibit certain selectivity for CO2 /N2 (21.9), CO2 /CH4 (5.3), CO2 /H2 (41.8) and C2 H2 /CO2 (2.3). This work has developed a series of boron containing two-dimensional frameworks with clear structures and good stability, and their tunable pore sizes have laid the foundation for future applications in the gas separation field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call