Abstract

As a natural sweetener produced by honey bees, honey was recognized as being healthier for consumption than table sugar. Our previous study also indicated thatmetaboliteprofiles in mice fed honey and mixedsugardiets aredifferent. However, it is still noteworthy about the batch-to-batch consistency of the metabolic differences between two diet types. Here, the machine learning (ML) algorithms were applied to complement and calibrate HPLC-QTOF/MS-based untargeted metabolomics data. Data were generated from three batches of mice that had the same treatment, which can further mine the metabolite biomarkers. Random Forest and Extra-Trees models could better discriminate between honey and mixed sugar dietary patterns under five-fold cross-validation. Finally, SHapley Additive exPlanations tool identified phosphatidylethanolamine and phosphatidylcholine as reliable metabolic biomarkers to discriminate the honey diet from the mixed sugar diet. This study provides us new ideas for metabolomic analysis of larger data sets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call