Abstract

Pocket corner is the most typical characters of aerospace structure components. To achieve high-quality product and stable machining operation, manufacturer constantly seek to control the cutting forces in pocket corner milling process. This paper presents the cutting force in corner milling considering the precision instantaneous achievements of tool engagement angle and undeformed chip thickness. To achieve the actual milling tool engagement angle in corner milling process, the details of tool–corner engagement relationship are analyzed considering the elements of tool trajectory, tool radius, and corner radius. The actual undeformed chip thicknesses in up and down milling operations are approached on account of the trochoid paths of adjacent teeth by a presented iteration algorithm. Error analysis shows that the presented models of tool engagement angle and undeformed chip thickness have higher precision comparing with the traditional models. Combined with the cutting force coefficients fitted by a series of slot milling tests, the predicted cutting force in milling titanium pocket with different corner structure and milling parameters are achieved, and the prediction accuracy of the model was validated experimentally and the obtained predict and the experiment results were found in good agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.