Abstract

A kinematic statistical method is proposed to determine the position for Chang’E-3 (CE-3) lunar lander. This method uses both ranging and VLBI measurements to the lander for a continuous arc, combing with precise knowledge about the motion of the moon as provided by planetary ephemeris, to estimate the lander’s position on the lunar surface with high accuracy. Accuracy analyses are carried out with simulation data using the software developed at Shanghai Astronomical Observatory in this study to show that measurement errors will dominate the position accuracy. Application of lunar digital elevation model (DEM) as constraints in the lander positioning is also analyzed. Simulations show that combing range/doppler and VLBI data, single epoch positioning accuracy is at several hundred meters level, but with ten minutes data accumulation positioning accuracy is able to be achieved with several meters. Analysis also shows that the information given by DEM can provide constraints in positioning, when DEM data reduce a 3-dimensional positioning problem to 2-dimensional. Considering the Sinus Iridum, CE-3 lander’s planned landing area, has been observed with dedicated details during the CE-1 and CE-2 missions, and its regional DEM model accuracy may be higher than global models, which will certainly support CE-3’s lander positioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.