Abstract

A free piston engine removes the mechanical constraint on the piston motion by eliminating the crankshaft. The extra degree of freedom offers many advantages for reducing fuel consumption and emissions. Nevertheless, stability and robustness of the engine operation has been affected in the meantime. To ensure smooth engine operation, an active motion controller, which utilizes robust repetitive control, was developed previously to regulate the piston motion of a hydraulic free piston engine to track pre-defined trajectories. However, the long piston stroke length, high operating frequency and system nonlinearity impose challenges to precise piston motion control. Therefore, feedforward controllers are investigated in this paper to complement the repetitive control to further improve the tracking performance. The first feedforward design involves the inversion of a linear plant model that describes the dynamics of the engine operation, and the second design is based on the flatness approach, which involves the inversion of a nonlinear model of the system. The two feedforward controllers are designed and implemented on the free piston engine. The experimental and simulation results demonstrate the effectiveness of the proposed control under various operating conditions and reference piston trajectories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.