Abstract

Anion exchange offers great flexibility and high precision in phase control, compositional engineering, and optoelectronic property tuning. Different from previous successful anion exchange process in liquid solution, herein, a vapor-phase anion-exchange strategy is developed to realize the precise phase and bandgap control of large-scale inorganic perovskites by using gas injection cycle, producing some perovskites such as CsPbCl3 which has never been reported in thin film morphology. Ab initio calculations also provide the insightful mechanism to understand the impact of anion exchange on tuning the electronic properties and optimizing the structural stability. Furthermore, because of precise control of specific atomic concentrations, intriguing tunable photoluminescence is observed and photodetectors with tunable photoresponse edge from green to ultraviolet light can be realized accurately with an ultrahigh spectral resolution of 1nm. Therefore, a new, universal vapor-phase anion exchange method is offered for inorganic perovskite with fine-tunable optoelectronic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call