Abstract
The FY3C and FY3D satellites were equipped with global navigation satellite occultation detector (GNOS) receivers that received both GPS and BDS-2 signals. For further improving precise orbit determination (POD) precisions, we estimated receiver GPS and BDS signal phase center variations (PCV) models with 2° and 5° resolutions and set the different weights for GPS and BDS-2 observations in the combined POD. The BDS-based POD precision using BDS-2 satellite antenna phase center offset (PCO) values from the China Satellite Navigation Office (CSNO) are not as accurate as those obtained from the International GNSS Service (IGS) Multi-GNSS experiments project (MGEX). The estimated receiver GPS and BDS PCV models with 2° and 5° resolutions were estimated from the GPS phase residuals of GPS-based POD and BDS phase residuals of combined POD, respectively. In most cases, the POD precisions using the estimated PCVs with 2° resolution are superior to those with 5° resolution. The precisions of the BDS-based POD and combined POD were both improved by introducing the receiver BDS PCV models. The weighting for GPS and BDS-2 observations can further improve the precision of the combined POD. The tested results of selected weights are better than those with equal weight in the combined POD. The experiment results show that orbital precisions of FY3C are worse than those of FY3D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.