Abstract

The precision of measurements performed by atomic-force microscopy (AFM) and high-resolution electron microscopy (HREM) for solving problems of metrology and diagnostics of solid nanostructures is discussed. The HREM-measured height of a monatomic step on a Si(111) surface covered by a thin natural oxide film is demonstrated to be 0.314 ± 0.001 nm. The same accuracy is ensured by AFM measurements through controlling the Si surface relief with heating in ultra-high vacuum on specially created test objects with the distance between the steps being approximately 2 µm. It is shown that the geometric phase method can be used to quantify the strains in the crystal lattice of strained heterostructures on the basis of HREM images with accuracy to 10−4%, and in situ irradiation by electrons in HREM measurements can be used to visualize ordered clusterization of vacancies and self-interstitial atoms in {113} planes in Si samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call