Abstract
There is a high demand for wireless sensing devices in harsh environments for industrial applications. For temperatures above 250degC, silicon-based sensors cannot be used. In contrast, bulk acoustic wave (BAW) and surface acoustic wave (SAW) devices are still suitable for this purpose. Further high-temperature applications include thermogravimetry on small volumes and gas sensing based on stoichiometry change of thin sensor films. Langasite (La <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Ga <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sub> SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">14</sub> ) is a piezoelectric single crystal that preserves its piezoelectric properties and is chemically stable up to its melting point at 1470degC without any phase transition and, therefore, is a promising material for high-temperature devices. Using a resonance-antiresonance method based on bulk oscillations, all components of elastic and piezoelectric tensors of langasite have been determined at temperatures up to 900deg C. Resonance spectra of several langasite samples have been measured and fitted with the impedance calculated from a one-dimensional physical model of piezoelectric bodies vibrating in several modes. In order to extract the electromechanical parameters, different resonator geometries and orientations are used. Also, the results of measurements are presented for SAW devices on langasite at temperatures from 25 to 750deg C. Two cuts with Euler angles (0deg, 138.5deg,26.6deg) and (0deg,30.1deg,26.6deg) have been studied. The devices were fabricated with a platinum (Pt) layer with different heights on a zirconium (Zr) adhesion layer. The main material parameters relevant for SAW devices such as phase velocity v <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">p</sub> , propagation loss alpha and coupling coefficient k <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> have been obtained. The measured SAW phase velocities compare well with those calculated with the elastic and piezoelectric tensors obtained by bulk-oscillation measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.