Abstract

In this work, I present a novel method for measuring the pulse duration of few-cycle pulses using spectral phase interferometry for direct electric-field reconstruction (SPIDER) with high accuracy. These few-cycle pulses were generated due to nonlinear self-phase modulation (SPM) in nonlinear medium (neon gas) using a one meter hollow-fiber. The observed reconstructed pulse intensity autocorrelation function was varied from 5.35[Formula: see text]fs to almost 13[Formula: see text]fs. Moreover, the applied method allows for direct controlling of the output pulse duration through variation of the pulse-width of input pulses at different pressure of neon gas. The observed results indicate that the SPM was enhanced for high neon pressure (2.5[Formula: see text]atm.) and short input pluses (32[Formula: see text]fs) without chirping. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call