Abstract
The measurement of cross sections relevant to nuclear astrophysics has become one main research topic at the VERA (Vienna Environmental Research Accelerator) facility. The technique applied, accelerator mass spectrometry (AMS), offers excellent sensitivity for the detection of long-lived radionuclides through ultra-low isotope ratio measurements. We discuss the potential and preliminary results of ongoing precision measurements of neutron-capture cross sections of 54Fe. Such measurements might help to clarify the recently found discrepancy of s-process nucleosynthesis at lower-mass nuclei (A<120), which might be attributed to a systematic offset in previous experimental data. Samples were irradiated with neutrons from thermal to MeV energies. After the irradiations, the amount of produced long-lived 55Fe (t1/2 = 2.72 yr) was analyzed using AMS. At VERA, detection of 55Fe was developed with a reproducibility of about 1%, which makes the 54Fe(n,γ)55Fe reaction a precise and unique laboratory measurement, which can serve as a reference to complementary techniques. In this regard a new 55Fe standard for AMS measurements was produced. The final cross-section data are expected to be accurate to better than 3%. We report a preliminary, however, already significantly improved thermal neutron cross section value of (2.32 ± 0.10) barn, and a value of (6.3 ± 0.6) mbarn for En = (520 ± 50) keV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.