Abstract

We present a precise measurement of a weak radio frequency electric field with a frequency of ≲ 3 GHz employing a resonant atomic probe that is constituted with a Rydberg cascade three-level atom, including a cesium ground state |6S1/2⟩, an excited state |6P3/2⟩, and Rydberg state |nD5/2⟩. Two radio frequency (RF) electric fields, noted as local and signal fields, couple the nearby Rydberg transition. The two-photon resonant Rydberg electromagnetically induced transparency (Rydberg-EIT) is employed to directly read out the weak signal field having hundreds of kHz difference between the local and signal fields that is encoded in the resonant microwave-dressed Rydberg atoms. The minimum detectable signal fields of ESmin = 1.36 ± 0.04 mV/m for 2.18 GHz coupling |68D5/2⟩ → |69P3/2⟩ transition and 1.33 ± 0.02 mV/m for 1.32 GHz coupling |80D5/2⟩ → |81P3/2⟩ transition are obtained, respectively. The bandwidth dependence is also investigated by varying the signal field frequency and corresponding −3 dB bandwidth of 3 MHz is attained. This method can be employed to perform a rapid and precise measurement of the weak electric field, which is important for the atom-based microwave metrology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.