Abstract
A generic red, green, and blue (RGB) LED system encompasses complex interactions of power, heat, light, and color, which pose a major challenge for achieving precise control over luminance and color-mixing in high-quality lighting applications. In this article, new nonlinear empirical models of a practical RGB LED system with closed-loop control are formulated. They enable precise prediction of luminous flux and color coordinates by using the three distinct reference voltages as the control variables for independent current regulation across the RGB LED strings. The proposed empirical models are experimentally verified by using a hardware prototype of a dc–dc single-inductor three-output LED driver with proportional–integral compensators and time-interleaving control scheme. The measured values of luminous flux and color coordinates agree closely with the predicted values from the models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.