Abstract

Abstract2D platinum diselenide (PtSe2) has received significant attention for 2D transistor applications due to its high carrier mobility. Here, using molecular beam epitaxy, the growth of 2D PtSe2 is investigated on highly oriented pyrolytic graphite (HOPG) and their electronic properties are unveiled via X‐ray photoelectron spectroscopy, Raman spectra, and scanning tunnelling microscopy/spectroscopy as well as density functional theory (DFT) calculations. PtSe2 adopts a layer‐by‐layer growth mode on HOPG and shows a decreasing bandgap with increasing layer number. For the layer numbers from one to four, PtSe2 has bandgaps of 2.0 ± 0.1, 1.1 ± 0.1, 0.6 ± 0.1, and 0.20 ± 0.1 eV, respectively, and becomes semimetal from the fifth layer. DFT calculations reproduce the layer‐dependent evolution of both the bandgap and band edges, suggest an indirect bandgap structure, and elucidate the underlying physics at the atomic level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.