Abstract
We created a simple device for the measurement of nanoscale displacements consisting in a Twyman–Green interferometer with one mirror having a slight offset in the horizontal plane with respect to the direction perpendicular to the incoming beam and one mobile mirror, a CCD array camera that captures frames of fringes (interferograms) generated by the interferometer and a software that acquires the interferograms captured by the camera and fits the fringes in order to determine the initial spatial phase of the series of fringes and, consequently, to monitor the movement of the mobile arm of the interferometer. Because the interferograms were acquired and analyzed sequentially, the algorithm could be parallelized easily on a multiprocessor/multicore platform. The device can work in real-time in which case the maximum speed of the mobile arm of the interferometer for which we can obtain unambiguous results is 30 λ/8/s, which is, assuming a He–Ne laser as the light source, almost 2.5 μm/s. In real-time conditions, the precision and accuracy of the measurement are low. In stationary conditions, however, the precision was determined to be below 1 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Optik - International Journal for Light and Electron Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.