Abstract

Studying the mechanisms of bagasse conversion into syngas is essential to sustain the growing use of biomass in energy economy production. In this work, the precise kinetics of bagasse gasification with various gasification agents was firstly investigated employing in-situ infrared spectra with Coats-Redfern integration, combining qualitative infrared spectroscopy allowed for kinetic analysis, so as to explore how the intermediate species vary in each basic reaction. The results demonstrate that the CO2 agent reduces the activation energy of nitryl after amino oxidation, making the lignin involved in gasification more easily as well as causing higher gasification efficiency. On the one hand, steam serving as a gasification agent enhances the concentration of hydroxyl groups and produces H2-rich syngas. On the other hand, the strong oxidizing hydroxyl group reduces the energy barrier of carbonyl and carboxyl groups in cellulose, which facilitates the gasification process. Furthermore, this study compared the effects of gasification agent (H2O or CO2) on syngas composition, reactor temperature distribution, carbon conversion rate, gasification efficiency, as well as low calorific value, providing essential information for understanding the micro-reaction pathways and pathway regulation during bagasse gasification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.