Abstract

Frequency estimation of microwave signals is a crucial functionality for applications ranging from biomedical engineering to electronic warfare systems. Photonics-based frequency measurement systems offer advantages of flexible reconfigurability and wide bandwidth compard to electronic methods. However, photonic based systems are limited by trade-offs between measurement range and accuracy. Here, we propose and experimentally demonstrate a frequency identification system with ultrahigh accuracy of 900 kHz, large bandwidth of 39 GHz, and the capability of multiple frequencies estimation. The great performance is achieved by wideband distributed frequency-to-power mapping created by self-heterodyne low-coherence interferometry. The results show that the system we proposed is beneficial for applications in RF spectrum sensing of modern communication and radar applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.