Abstract

Monitoring crystallographic orientations of graphene is important for the reliable generation of graphene-based nanostructures such as van der Waals heterostructures and graphene nanoribbons because their physical properties are dependent on crystal structures. However, facile and precise identification of graphene's crystallographic orientations is still challenging because the majority of current tools rely on complex atomic-scale imaging. Here, we present an identification method for the crystal orientations and grain boundaries of graphene using the directional alignment between epitaxially grown AuCN nanowires and the underlying graphene. Because the nanowires are visible in scanning electron microscopy, crystal orientations of graphene can be inspected with simple procedures. Kernel density estimation that we used in analyzing the nanowire directions enables precise measurement of graphene's crystal orientations. We also confirm that the imaged nanowires can be simply removed without degrading graphene's quality, thus showing that the present method can be practically used for measuring graphene's crystal structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call