Abstract

<p>GNSS-Reflectometry (GNSS-R) is a promising new technique to monitor water levels due to easier and cheaper installation of instruments in remote environments compared to traditional acoustic sensors or pressure gauges. GNSS stations that have been used for reflectometry purposes thus far are designed for monitoring land motion and may cost more than 10,000 USD each. We have found that a low-cost GNSS antenna and receiver (10 USD) can be used to make equally precise water level measurements, with an RMSE of a few centimeters when compared to a collocated acoustic sensor. However, an RMSE of less than one centimeter is typical for water level sensors and this level of accuracy is desired for research purposes. Two of the dominant sources of error in GNSS-R measurements are the effects of random noise in the Signal-to-Noise Ratio (SNR) data and tropospheric delay. Modelling work suggests that these sources of error can be reduced by using multiple low-cost antennas in the same location. In light of this, we have installed an experimental setup of antennas at various locations along the Saint Lawrence River and Initial results show that multiple antennas can be used to provide more precise measurements than a single antenna. Our installations of multiple antennas are less than 5% of the cost of stations that have been used in previous GNSS-R literature. Hence this approach could be applied to install a dense network of water level sensors along rivers, lakes or coastlines at a relatively low cost. We expect that this approach could also be applied to GNSS-R soil moisture or snow depth measurements.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.