Abstract

Edwardsiella tarda is one of the leading fish pathogens for the aquaculture industry. To realize efficient disease control of edwardsiellosis, a predictive model for E. tarda in seawater was developed. The modified logistic model was used to regress the growth curves of E. tarda JN at five different temperatures (range from 10 to 30 °C) and four organic nutrient concentrations (range from 5 to 40 mg l−1 measured by chemical oxygen demand (COD)). The modeling effects of temperature and COD on the specific growth rate (μ) were developed by square-root model and saturation-growth rate model, respectively. The growth model was validated in turbot aquaculture tanks by estimating the dynamics of inoculated E. tarda. The accurate feeding of probiotic Bacillus pumilus strain H2 was calculated based on the estimation of E. tarda. Results showed that the logistic model produced a good fit to the growth curves of E. tarda JN (average R2 = 0.962). The overall predictions based on above models agreed well with the growth curve of E. tarda JN observed by plate counting in the validation tests (average Af = 1.16; average Bf = 1.32). The use of predicted amount of B. pumilus (5.66 log CFU ml−1) successfully prevent the deterioration of disease for turbot with 13.3% mortality rate in a recirculating aquaculture system (RAS), while the feeding of 0 and 3.0 log CFU ml−1 of B. pumilus resulted in 53.7 and 75.3% of turbot mortality rate, respectively. In conclusion, accurate estimation of E. tarda realized the precise feeding of probiotics, which successfully prevent the rapid progression of the edwardsiellosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call